Answer

Step by step solution by experts to help you in doubt clearance & scoring excellent marks in exams.

Updated On: 6-10-2020

Apne doubts clear karein ab Whatsapp par bhi. Try it now.

CLICK HERE

Loading DoubtNut Solution for you

Watch 1000+ concepts & tricky questions explained!

42.2 K+

2.1 K+

Text Solution

Solution :

`(dx)/(dy)=(1)/((dy)/(dx))` <br> `rArr" "(d^(2)x)/(dy^(2))=(d)/(dy)((1)/((dy)/(dx)))=(d)/(dx)((1)/((dy)/(dx))).(dx)/(dy)=(-1)/(((dy)/(dx))^(2)).((d^(2)y)/(dx^(2)))((dx)/(dy))` <br> `therefore" "(d^(2)x)/(dy^(2))=((-d^(2)y)/(dx^(2)))/(((dy)/(d))^(3))or (d^(2)y)/(dx^(2))=-((dy)/(dx))^(3).(d^(2)x)/(dy^(2))` <br> `rArr" "(d^(2)y)/(dx^(2)=-((dy//dt)/(dx//dt))^(3).(d^(2)x)/(dy^(2))` <br> `rArr" "(d^(2)y)/(dx^(2))=-[(g'(t))/(f'(t))]^(-3)((d^(2)x)/(dy^(2)))`**Definition and geometric meaning.**

**Differentiation by first principle: sin x**

**What is chain rule explanation?**

**Differentiation of inverse function by chain rule**

**Differentiation by substitution**

**Differentiation Of Implicit Functions**

**Find differentiation of `arc sinx` using first principle**

**Find differentiation of `arc cosx` using first principle**

**Derivation of all well known results**

**Diffrentiate ` e^(2x)` and `e^sinx`**